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The transformation groupoid of Lorentz invariant space 

P Lloyd 
Physics Department, Monash University, Clayton 3168, Melbourne, Australia 

Received 16 October 1974 

Abstract. In a relativistic description of nature, physics may be seen as the transformation 
of events from one space-like surface in Minkowski space to another such space-like surface. 
In the present paper an abstract algebra is formulated which characterizes such transforma- 
tions in much the same sort of way as the algebra of the rotation group characterizes rota- 
tional transformations. Both quantum field theory and the classical theory of contact 
transformations are representations of this algebra. Hence from this viewpoint quantum 
field theory becomes the group theoretical problem of constructing unitary irreducible 
representations of the algebra. 

1. Introduction 

Symmetry groups, of various kinds, play an important role in modern physics and the 
aim of this paper is to define an algebra of this type which one might expect to be of 
particular relevance in a relativistic description of nature. In order to explain the 
motivation behind the construction of this algebra we shall first digress and consider the 
rotation group. From a physical point of view, the elements of this group algebra are 
the actual physical operations which one uses to rotate a real body and the composi- 
tion, or multiplication, law of the algebra is the same as the actual composition attained 
by successive rotation operations. However, from a more sophisticated viewpoint 
the rotation group is an abstract algebra, only one of whose representations is the 
set of physical acts involved in rotating an object. The abstract algebra has other re- 
presentations, such as the set of substitutional coordinate transformations (often used 
as a definition) and the unitary matrix representations. The unitary representations also 
play a role in quantum mechanics and this allows the rotation group to be used in the 
study of the angular momentum operators. Although this does not lead to any results 
that cannot be deduced from the mechanics formulae L = r xp ,  this ‘algebra of physical 
operations’ approach does give a different insight into why, for example, the angular 
momentum operators satisfy the commutation relations that they do. Moreover, this 
different viewpoint may suggest some extension of the original ideas, such as the intro- 
duction of the universal covering group, SU(2). 

In the present paper a different algebra of physical operations is constructed, and its 
unitary representations are related to quantum field theory. Again, the advantage in 
this is the insight which it offers. The physical operations involved in this new algebra are 
those which occur in transforming one three-dimensional space-like surface embedded 
in a four-dimensional Minkowski space into another such surface. Obviously such an 
algebra is deeply involved in any relativistic description of nature. 

The abstract algebra formed is actually a groupoid algebra. The differences between 
a groupoid and a group are slight and are discussed in $ 2 .  The axioms defining this 
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groupoid are given in $ 3. They are based purely on physical (or geometric) operational 
considerations: no quantum field theoretical concepts as such are involved. This is 
actually a Lie groupoid and in $ 4  it is analysed in terms of infinitesimal generators. 
In $ 5  it is shown that the axioms of the groupoid demand that these infinitesimal 
generators have a simple form while in 9 6 the Lie algebra of the groupoid is deduced. 
Finally, in 4 7, the classical and quantum field representations of the algebra are dis- 
cussed. 

2. A Brandt groupoid 

A Brandt (1927) groupoid is an abstract algebra in which a single composition, or multi- 
plication, operation is defined. The only difference between a groupoid and a group is 
that the product of two elements is not necessarily defined in a groupoid. For the group- 
oid of interest in this paper the concepts and techniques of ordinary group theory are 
still applicable. 

Groupoids arise naturally in the theory of mapping, or transforming, a given set of 
objects, say {a}, into some other set. Corresponding to the mapping operation which 
takes the object a into a’, which we denote by a -+ a’, one can define a groupoid element 
U[a -+ a’]. When the transformation o -+ o’ is followed by a’ -+ a” the result is equiva- 
lent to a -+ a” and hence the composition law for the algebra is defined to be 

U [ o  -+ a’]U[a’ -+ a”] = U[a -+ a”]. (2.1) 

Such an algebra obviously satisfies all the defining axioms of a group with the exception 
that the multiplication U[a, -+ a,]U[o, --* a4] may not be defined: the algebra is a 
groupoid and not a group. 

I t  might be noted that the order of the factors on the left-hand side of(2.1) is a matter 
of convention, and the above ordering has been chosen in order to agree with the 
Heisenberg picture conventions of quantum field theory. 

There may be several ‘mapping labels’, a -+ a’, for each truly independent element of 
the groupoid. For example, the orientation of a body may be specified by three angles 
(e, 4, I)) and hence the elements of the rotation group may be labelled with the mapping 
scheme above by identifying a with the set of angles (0,4, I)). The multiplication table 
(2.1) is then valid for the rotation group also, but now each independent member of the 
group has many different labels. The independent elements in the rotation group are, 
of course, the ‘rotation operations’ and these exist independently of the alignment of 
the object being rotated, thereby giving the redundancy to the mapping labels. The 
important point to note is that, under such a labelling scheme for the elements of the 
groupoid, the intrinsic structure of the theory does not lie in the multiplication table (2.1) 
but in the specifications which define the redundancy in the labelling system. 

3. The elements of the groupoid 

3.1. Labelling of the elements 

In a flat four-dimensional Minkowski space the coordinates are xu. (U = 0. 1.2,3), and 
the metric is gJ = diag( + 1, - 1, - 1, - 1). A three-dimensional surface, a, may be 
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parametrized by U so that 

a = {x” = X ” ( U l U Z U 3 ) ,  o! = 0,1,2,3}. (3.1) 

The function xu(u) are assumed to be smooth and suitably differentiable. These surfaces 
are restricted to being space-like (so that representations of the algebra will actually exist), 
ie the unit normal to the surface, n,(x), must be everywhere time-like 

The mapping of interest, a + a’, is then the transformation of the points forming the 
space-like surface a into the points forming the space-like surface a’. This mapping is 
defined independently of the parametrization used, but it is to be noted that two mappings 
a + a’ and a + a” are different, even when a’ and a” form the same geometric surface, 
unless the individual points of a are in both cases transported to identical new positions. 
The allowed mappings are assumed to be one-to-one, continuously differentiable, etc. 

The elements of the abstract algebra, U ,  are labelled by these mapping operations, 

U = U[a --$ a’]. (3.3) 

These elements are redundantly labelled and hence (3.3) should not be considered as a 
functional of the initial and final positions of the points in the surface, but it should be 
considered as being labelled by the act, or operation, involved in making the trans- 
formation a -+ a’. If all such operations could be uniquely defined in such a way that 
they could be applied to an arbitrary surface then the multiplication law (2.1) would 
reduce into a group multiplication table. But this is not the case and the algebra remains 
a groupoid. Even so there is still a large amount of redundancy in the labelling. 

3.2. The unit element 

Consider the unit element U[a + a]. As labelled this could be a functional of the surface 
a. But if the element is a characterization of the operation involved, then one ‘feels’ that 
this is the same operation (ie no change) no matter which surface a is involved. Hence 
this is defined to be 

U[a --$a] = 1, (3.4) 

a single element of the groupoid independent of a. 

3.3. Local deformation assumptions 

The same considerations apply in the following case : consider two different space-like 
3-surfaces, a1 and az, which are however coincident over some finite region R.  Now 
suppose that some deformation is made to the coincident part of the surfaces, with the 
deformation entirely restricted to the region R.  ‘Clearly’ it is the same deformation, ie 
the same geometric operation, no matter whether one considers the region R as belonging 
to the surface a1 or to the surface az. Hence if the above situation corresponds to either 
a1 --$ a’, or to uz --$ a;, then it is assumed that 

U[a, -+ a;] = U[a, -+ a;]. (3.5) 
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A much stronger version of this group axiom is also assumed. In the limit of an in- 
finitesimal local deformation the two surfaces a 1  and a2 need only be tangential in 
order to define a common region. Equation (3.5) is still assumed valid, ie to show two 
different labelling schemes for the same independent groupoid element, in this limiting 
situation also. 

3.4. Inhomogeneous Lorentz transformations 

In a Minkowski space, and in contradistinction to a general Riemann space. it is possible 
to define the inhomogeneous Lorentz group of operations. These operations may be 
considered as operations which translate and Lorentz rotate objects situated in that 
space (rather than as coordinate transformations), and as such may be applied to surfaces 
which exist in the Minkowski space. ‘Obviously’ these will be the same operations no 
matter to which surface they are applied. If L denotes an element of the inhomogeneous 
Lorentz group, and 5 + L(o) denotes the effect of this operation when applied to the 
surface a, then it is assumed that 

Hence the groupoid element on the left-hand side of (3.6) is not a functional of the surface 
a but depends only on the parameters specifying the inhomogeneous Lorentz group 
element, L. 

This last assumption makes the inhomogeneous Lorentz group a subgroup of the 
total groupoid. 

4. Lie groupoid assumptions 

Just as in the theory of ordinary groups. additional assumptions must be introduced in 
order to define a Lie (or continuous) groupoid. Firstly some generalized concept of 
‘nearness’ between the elements of the abstract algebra must be introduced. and then it 
is assumed that an infinitesimal change in the parameters labelling an element leads to 
an infinitesimal change in the actual element. The groupoid element corresponding to 
an infinitesimal change is then expanded in the form U = 1 - iG. where G is called the 
infinitesimal generator of the transformation (the factor - i here has been introduced 
in order to conform to the usual quantum mechanical conventions). In order to make 
this expansion the composition operation of ‘addition’ must be introduced into the 
algebra, but this operation is only introduced for the purpose of analysing the individual 
groupoid elements. The addition operation is assumed to have all the usual properties 
normally associated with addition, including commutativity. 

In an infinitesimal geometric mapping operation the point xa(u) of the surface U is 
transported by the infinitesimal amount A”(u) to the new position x“(u)+ A”(u) on the 
surface a +  A, and the groupoid element corresponding to this will be denoted by 
U [ o  + o+A]. This shows that an infinitesimal transformation is parametrized by an 
infinite set, {A”(u)},  of infinitesimal parameters. The expansion about the unit element 
then takes the form 

U[a + c + A] = 1 - iG[A, 01 + O(A2) (4.1) 

where G[A. a]  is assumed to be a linear functional of the infinitesimal parameters. 



QFT as  a representation problem 463 

The infinitesimal generator will be written in the form 

G[A,  a] = J,(x,  [o])A,(x) dS s, 
where Ju(x .  [a]) is an (as yet) arbitrary functional of the surface a. Here the infinitesimal 
parameters have been specified by the point x on that surface to which they belong, 
rather than by the parameters U. Although (4.2) is analogous to the corresponding 
expressions from the theory of ordinary Lie groups, it requires a variety of assumptions 
in order to make it unique. Firstly, it is an assumption that the measure across the 
parameters may be taken as being proportional to  the surface area element, dS, although 
it is hard to see what other assumption could be used. Secondly, it is an assumption that 
G[A, a] is an analytic linear functional of the components A"(x) and not, for example, of 
the modulus /AI = J(AaA,). Next, it should be realized that (4.2) is not the most general 
linear functional possible as one may, for example, add linear combinations of surface 
differentials of A"(x) to the above expression. However, if it is assumed that J,(x,  [a]) 
may be a generalized function of x ,  and that there is no need to worry about the end 
point contributions in an integration by parts operation, then it is possible to  transform 
these alternative forms into (4.2). Throughout the ensuing analysis it is always assumed 
that in any integration by parts, with the integration being carried out over an infinite 
space-like surface. that there are no end point contributions. This puts restrictions on 
any representation of the algebra. All such assumptions as are necessary to ensure the 
validity of (4.2) will now be assumed without further discussion. 

5. The energy-momentum tensor 

The dependence of the functional J,(x.  [o]) on the surface a may be completely determined 
from the group axioms given in 4 3. 

The locality assumptions of 4 3.3 immediately eliminate most of the arbitrariness 
from the functional form. The elements of the groupoid have been assumed to be 
independent of the parametrization and to only depend on the geometric properties of 
the transformation. Hence J,(x, [a]) must be a functional of only geometric properties 
of the surface. such as the unit normal components, or the surface curvature components, 
etc. But the locality requirement demands that this must be the same operator for any 
two tangential surfaces which meet only at the point x .  The only geometric quantity 
which an arbitrary two such surfaces have in common is the unit normal, np(x), at the 
point x. Hence J z ( x ,  [o]) is at most an ordinary function of the position xa and of the 
unit normal np : 

J,(x, [a]) = J,(x,  n). (5.1) 

The inhomogeneous Lorentz group assumptions of 43.4 then allow the actual 
functional dependence ofJ,(x, n) with respect to  the normal np to be determined. Evaluat- 
ing G[A, a] with a constant A', and equating the result to A"P,, shows that the generator 
of a translation in the inhomogeneous Lorentz group is 

P ,  = J,(x. n) dS. I, 



464 P Lloyd 

The Lorentz group axioms demand that this operator must be independent of the surface 
6. Varying the position of the surface slightly (see appendix) shows that the function 
J , (x ,  n)  must satisfy 

In this equation the four components of n, have been treated as independent variables. 
but it must be remembered that J , (x ,  n)  need only be evaluated in the situation where 
these components satisfy 

nagaPnll = + 1. (5.4) 

The quantities R,, which appear in equation (5.3) are the components of the surface 
curvature tensor at the point x (see appendix). This tensor is symmetric and satisfies 

nSRsf = RtsnS = 0. (5.5) 

As equation (5.3) must hold for an arbitrary surface which may have arbitrary values of 
R, , ,  provided that ( 5 . 5 )  is satisfied, Ju(x ,  n)  must satisfy 

(5.6) 

a a  
- -J , (x ,  n)  + gs' an, an, = nsB;(x ,  n) + nfB;(x .  n), 

where B;(x, n)  are arbitrary functions of x and n. In order to  determine the functional 
form of Ja(x ,  n)  the series expansion 

(5.7) 
1 

2!  
J , (x ,  n)  = T,(x)  + T f ( x ) n p  + - T,PY(x)npny + . . . 

will be substituted into (5.6) and the coefficients of the powers of n equated. The author 
has a proof which does not involve introducing this series expansion, but i t  is long and 
inelegant and will not be presented here. Making the corresponding expansion for the 
functions 

(5 .8 )  B;(x, n)  = b:(x)+b:(x)n,,+ . . . 
and substituting, gives 

(5.9) 

I t  is to be noted that the linear term T,B(x) does not appear in this equation and hence 
cannot be determined from it .  Equating the coefficients of the powers of n then gives a 
series of equations for the coefficients. We shall only consider in detail a single example: 
the coefficients of the linear powers of nu in (5.9) must satisfy 

(5.10) 

At this stage it must be remembered that a solution is required only in the situation where 
(5.4) holds. But when the normal is truly a unit vector. (5.10) shows that the third-order 

1 (TS,'(x) + T f ( x ) n ,  + . . . ) + gS' T, (x )  + 0 + - - - TfY(x)npn,  + . , . [ (i! i!) 
= ns(b:(x) + bC(x)n, + . . .) + n'(b;(x) + b r ( x ) n ,  + . . .). 

Ts,'"(x) = g""b',(x) + g'"bS,(x). 
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contribution of the series expansion for Jn(x ,  n)  is 

1 1 
- ~ ~ ~ " ( x ) n , n ~ n ,  = -bt(x)n, ,  
3 !  3 

(5.1 1) 

and this has the same functional form as the contribution to J a ( x , n )  from the term 
T t ( x ) n a .  The same type of consideration may be applied to every order of (5.9) and it 
leads to the final conclusion that the functional form of Ja(x,  n) (when (5.4) holds) must be 
equivalent to 

J,(x, n) E T t ( x ) n a .  (5.12) 

The quantities T t ( x )  are not completely arbitrary. Substituting (5.12) into (5.3) 
shows that these quantities must also satisfy the conservation condition 

a 
- T ! ( x )  E 0. 
ax,  

(5.13) 

A similar analysis can be made with respect to the Lorentz rotational operators, 

(5.14) 

where U J " ~  = - ma' is infinitesimal. This analysis will not be given in detail but it leads 
to the result that q a ( x )  must be symmetric with respect to interchanging a and b, ie 

T,&) = (5.15) 

which follow from evaluating G [ A ,  a] with 

A"(x) = w'~(x' - ~ 8 , )  

The multiplication law, (2,1), for the groupoid implies that 

U[L(a) + L(a')] = U -  ' (L)U[o -+ a']U(L), (5.16) 

and this in turn implies that the quantities T t ( x )  must transform as tensor quantities 
under the action of the Lorentz rotational elements, U(L), of the groupoid. 

Hence we have shown that the defining axioms of the abstract groupoid imply that 
the infinitesimal generator must have the form 

G [ A ,  a] = Jn A"(x)TE(x)n, dS = A"(x)Tt (x)  dS, I (5.17) 

where T ; ( x )  is a symmetric, conserved tensor operator. We shall call T ; ( x )  the energy- 
momentum tensor, as it may be identified as such in quantum field theory. That the form 
(5.17) for the infinitesimal generator is a direct consequence of the purely physical 
considerations embodied in the axioms of 9 3 is the most important result of this paper. 

6. The Lie algebra of the groupoid 

The Lie algebra of a Lie group provides a set of commutation relations which must be 
satisfied by the infinitesimal generators of the group. In the present groupoid a similar 
algebra exists in the form of commutation relations for the energy-momentum tensors. 

The Lie algebra of the groupoid expresses the integrability conditions on the in- 
finitesimal generators. If an infinitesimal transformation of a surface, as described by 
the parameters ( A ; ( x ) } ,  is followed by a second infinitesimal transformation, as given by 
the parameters { A ; ( x ) ) ,  then the result is a single groupoid element corresponding to 
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the combined transformation. But the combined transformation is independent of the 
order of the above two sets of infinitesimal transformations. Hence the infinitesimal 
generators must be such that they satisfy 

(1-iG[Al,a])(l-i(G[A,,o]+61G[A2,a])} = (1-iG[A2.a])(1-i(G[Al,a] 

+ 62G[A, > a])} (6.1) 

where 6,G[A2,  a] is the change in the infinitesimal generator G[A2, a] on shifting the 
surface a by the amounts (AY(x)}. Expanding this shows that the integrability condition 
on the infinitesimal generators is 

(6.2) 
1 
T [ G [ A ~ , ~ ] ,  G[A2,0]1- = 62G[A1, o ] -6 ,G[A2 ,aI  
1 

where [ A ,  B]- = A B - B A  denotes the commutator of the two enclosed quantities. 
Let us consider in more detail the change in 

G[A,,  03 = A",x)T!(x) dS, s, (6.3) 

when the surface a is altered by the parameters {A$(x)). The change in the energy- 
momentum tensor is 

while the change in the surface area element (see appendix) is 

62(dS,9) = dS DB,(x)A;(x). (6 .5)  

Here D,,(x) is the surface differential operator at the point x. 

and, despite the notation, this differential operator acts only on surface values of a 
function. Using these results 

This result may be simplified by integrating by parts (and ignoring any contributions 
from the end points at infinity, see 9 4) with the formula 

Ju (A~(x)T,B(x)De,(x)A;(x)) dS = - 1 (A4(x)o,,(x)AY(x)T~(x)) dS. (6.8) 
a 

Combining, and using the conservation condition (5.1 3), then gives 

(6.9) 

In order to deduce the commutation relations for the energy-momentum tensors 
from (6.2), it is convenient to express the above result as a double surface integral. This 
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may be achieved by introducing the surface delta function d,(x, y) (see appendix). This 
even function is defined only on a surface running through the two points x and y ;  it is 
zero except when the point x is in the neighbourhood of the point y ;  and it satisfies 

(6.10) 

for an arbitrary ‘good’ function defined on the surface 0. With the aid of this generalized 
function (6.9) may be written as 

W [ A 1 >  a1 = s, dS (4 s, dS (Y)AwA;(YM - T!(Y)DdY)4(Y, 4). (6.1 1 )  

The quantity 6,G[A2, a] may be expressed in a similar double integration form, as 
may the left-hand side of (6.2). As the integrability condition (6.2) must be valid for 
arbitrary sets of infinitesimal parameters, it implies that the Lie algebra for the groupoid 
is 

(6.12) 

To be pedantic this is not strictly a ‘Lie algebra’ (and should perhaps be referred to as a 
‘Lie algebroid’) as the commutation related needs hold only for points x, y which have a 
space-like separation between them. It must also hold for any space-like surface con- 
structed such that these two points lie in it : the normals and the surface delta function 
are defined once the surface is given. As (6.12) implies that T!(x) commutes with T:(y) 
for finite separation distances between x and y, this surface needs only be constructed 
when the two points are in the same neighbourhood. 

The problem of finding representations of the total groupoid algebra has now been 
reduced to the problem of finding symmetric (5.15), conserved (5.13), quantities T!(x) 
which provide a representation of the Lie algebra (6.12). The algebra itself implies the 
conventional Lie algebra for the generators of the inhomogeneous Lorentz group, and 
that the quantities T!(x) must transform as tensor quantities under the action of these 
elements of the groupoid. 

7. Conclusion 

This paper has attempted to define, and to deduce the Lie algebra of, a particular abstract 
algebra of physical relevance. The defining axioms of this groupoid algebra have been 
correctly chosen, as far as this paper is concerned, if the algebra may be realized in terms 
of those physical operations which are involved in the alteration of given space-like 3- 
surfaces (embedded in a Minkowski space) into other such surfaces, and if the axioms 
fully capture the ‘essence’ of such transformations. Hence the paper has succeeded (or 
not) in its aim depending on just how well the defining axioms given in 9 3 measure up 
to these criteria, and this must be adjudicated upon by the individual readers. On the 
other hand the usefulness of the groupoid depends on the existence of other representa- 
tions of the algebra, and the insight which is provided by correlating the properties of 
these other representations with the properties of this algebra of physical operations. 
By way of a conclusion to the paper, two other such representations will now be discussed. 
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The canonical theory of ‘contact transformations’ provides one representation of 
the groupoid. Consider (for simplicity) a scalar field +(x) which makes 

an extremal. The resultant Euler-Lagrange differential equation may be seen as a 
transformation device which takes the corresponding Cauchy data as given on one 
surface into an equivalent set of Cauchy data on a different surface. In the theory of 
contact transformations this transporting of the Cauchy data is derived via the action 
functional, S[40aol~a]. This is a functional of the field values { ~ ( x ( u ) ) }  on the two 
surfaces, and the numerical value of this functional is equal to the numerical value of 
(7.1 ), 

S [ 4 0 ~ o l 4 ~ 1  = S ,  (7.2) 

when it is evaluated with an extremal solution which has the values {40(u)}  and {4(u)}  
on the two surfaces. In the corresponding representation of the groupoid, the groupoid 
element is 

(7.3) U[ao -+ cl = ~[40ao14al = exp(iS[40ao14al)3 

and the groupoid multiplication operation is defined as ordinary multiplication, 

~[4oaol4za21 = ~ ~ 4 0 ~ 0 l 4 1 ~ 1 3 ~ ~ 4 1 ~ 1 l 4 2 ~ 2 1 ~  (7.4a) 

coupled with the criterion that the values of {+1} in the right-hand side of (7 .4~)  must 
be such that the surface functional differential equation 

is satisfied. It is clear from the general theory of contact transformations that these 
elements, with the above multiplication law, satisfy the groupoid multiplication require- 
ment (2.1). 

The infinitesimal element of the algebra must be such that when it multiplies 

ie it is 

(l-iG[A,a]) = ( l-i/oAu(x)T~(x)dS,) 

with 

(7.5) 

(7.6) 

This is the usual form of the energy-momentum tensor for a classical field and the 
infinitesimal generator is the same one which would normally appear in a Poisson 
bracket formalism. Poisson brackets enter into the present formalism from a considera- 
tion of the groupoid product of two infinitesimal generators. The multiplication law 
(7.4) is not directly applicable to the product of two infinitesimal generators on the 
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same space-like surface, but making two successive infinitesimal transformations and 
equating the result to the left-hand side of (6.1) shows that 

6G[A,.a]  GG[A,, 03 
G[A, , a] x G[A,, a] = G[A, , a]G[A,, a] - i dS, (7.7) 

where x denotes the groupoid product and the multiplications on the right-hand side 
are ordinary numeric multiplications. In this formula 

is the conjugate momentum of the field with respect to the surface 0. Consequently the 
groupoid commutator bracket is 

[G[A, ,a] ,G[A, ,al]-  = i (G[A, ,aI ,  GIA, ,aI )p ,  (7.9) 

where ( A ,  B}p is the traditional Poisson bracket. In this representation the Lie algebra 
of the groupoid becomes 

( T$(x)nfl> T : ( y ) n b )  P = T:(x )Dba(x )bs (x ,  Y )  - T!(Y)Dflo(Y)6s(Y,  (7.10) 

and the validity of this equation may be checked by directly substituting (7.6). 
Relativistic quantum field theory provides the second representation of the abstract 

groupoid algebra. In this representation the groupoid elements are unitary matrix 
operators defined with respect to a Hilbert space, and the groupoid multiplication 
operation is defined as matrix multiplication. In quantum field theory the basic Lie 
algebra of the groupoid was first discovered as a commutation relation for the energy- 
momentum tensors by Schwinger (1962), who later gave a general derivation of the 
relation by studying the response of an arbitrary system to a perturbation by an external 
gravitational field (Schwinger 1963a). Schwinger states that this commutation relation 
is ‘the most fundamental equation of relativistic quantum field theory’. The groupoid 
algebra constructed here gives a new insight into the origin of this commutation relation. 

I t  is perhaps worth stressing that the underlying metaphysics behind the present 
groupoid approach is quite different from that which underlies Schwinger’s (1951,1953) 
variational assumption. Moreover, the content of the two theories is not the same. 
Indeed, as far as local field operator solutions are concerned, the variational assumption 
appears to be more general than the groupoid algebra approach. Schwinger (1963b) 
has shown that the basic commutation relations (6.12) are not satisfied by fields which 
describe spin 3 (or higher) particles and that in these cases the variational assumption 
leads to a different set of commutation relations. Within the spirit of the groupoid 
axioms, it is not easy to see how the present formalism could be altered so as to lead to 
these modified commutation relations. In the groupoid formalism such particles would 
have to be composite and not elementary. 

From the point of view of the groupoid algebra, the problem of constructing a 
relativistic quantum field theory is synonymous with the problem of constructing a 
unitary irreducible representation of the Lie algebra (6.12). The space covered by an 
irreducible representation of the inhomogeneous Lorentz subgroup of the total groupoid 
is then to be interpreted as the space belonging to a single ‘particle’. I t  is of interest to 
note that no representation of the total groupoid algebra is covered by the space of a 
single particle and that any such representation involves an indefinite number of par- 
ticles. At present the only known methods for constructing such irrepresentations of 
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the algebra are based on the introduction of Lagrangian functionst, but from the 
groupoid point of view it is the Lie algebra, and not the Lagrangian, which is funda- 
mental. It is possible, even probable, that all irrepresentations of the Lie algebra of the 
groupoid are equivalent to local field solutions of the normal Lagrangian methods, but 
whether or not this is necessarily the case is unknown to the present author. 
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Appendix. Some surface formulae 

When the points of the 3-surface are parametrized as x'(u) the surface area element is 
given by 

dxS dxY dx6 
dS, = caBy6- - - du' du2 du3 

du' du2 du3 
(A. 1 a) 

= n,J(u)d3u = n,dS, (A. 1 b)  

where n, is the unit normal and dS is the magnitude of the surface area element. In 
terms of these quantities the surface delta function may be defined as 

where U parametrizes the point x, and U' the point y .  This is the quantity introduced at 
equation (6.10). 

With the aid of the surface delta function. the surface functional derivative 6/6&y) 
of a surface functional F[{#(x)}, a] of the surface values ~ ( x ( u ) )  is defined by the expan- 
sion 

This is the functional derivative which appears in the Poisson bracket (7.10). 

f The 'representation argument' would be: if the infinitesimal generator has the same functional form as in 
some classical representation, but is now constructed from local field operators which satisfy the same Euler- 
Lagrange differential equations und the operator boundary condition i -  '[q$(s). rr(y)] = 6Jx. y). then (apart 
from ordering problems) i t  is an algebraic consequence of the boundary conditions that 

i - ' [ G l % G 2 ] -  = I G l , G 2 } p  

and it  is a consequence of the equations of motion that (7.10) is satisfied. Hence such a general6 provides an 
operator representation of the Lie algebra of the groupoid. 
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The surface differential operator D,,(x) of equation (6.6), acts on surface functions 
and not function&. This antisymmetrlc operator is identically zero unless one of its 
tensor components sustains the unit normal to the surface. Hence one also defines 

a a 
ax axy 

D, E naDa,(x) = a - nznY- 

This reduced operator satisfies 

nzD, = 0 (A.5a) 

and 

dx" d 
dun dun' 
-D, E - (A.5b) 

thereby showing that only surface values are involved in the application of these surface 
operators. 

The surface differential operator Dza(x) satisfies (when the end point at infinity 
contributions are ignored) a simple integration by parts formula (cf equation (6.8)). 
But this implies that the corresponding formula for D, is 

c c c 

where R = R(x) is the mean curvature of the surface at the point x. The mean curvature 
is defined as 

R = gS'R,, (A.7) 

R,, = Dsnt ( A 4  

where 

is the second-order curvature tensor, or the 'second fundamental form', of the surface. 
This is the quantity which appears in equation (5.3). I t  satisfies (5.5) and is related to the 
Riemann curvature tensor of the surface (in this flat enveloping space situation) by 

If the surface is transported by an infinitesimal distance, so that the point x(u) shifts 
to x(u) + A(u), then the surface area element alters by 

dAa dxY dx' dxs dAY dxb dxs dxY dAY 
du' du2 du3 du' du2 du3 du' du2 du' 
- - -+- - -+- - - ) d 3U (A.lOa) 

= dS (DZa(x)Aa(x)). (A.lOb) 

This is equation (6.5). Equation (A.lO) immediately implies that 

6(dS) = (D,A") dS, 

and 

6(n,) = -ns(D,AB). 

(A.11) 

(A. 12) 
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Using these results the change in a surface functional on altering the surface may be 
calculated. For example, the change in the translation generator of the inhomogeneous 
Lorentz group is 

6P,  = 6 J,(x, n) dS s, 
Substituting for 6(dS) and integrating by parts shows that 

6(dS) J ,  dS = (J,D,Ay) dS s, 
= (RJ,n,AY- AYD,J,) dS 

(A. 13a) 

(A. 1 3 b) 

(A. 14a) 

(A.14b) 

Similarly 

aJ aJ d J  
6n,> dS = [ - Rn,ntAY---3+ R AY> 

an, an, y r  an, 

Collecting these terms then gives the final result 

a a  

an, an, 

and this leads directly to equation (5.3). 
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